
Physics 09-03 Magnetic Force on a Current-C	Carrying Wire
---	---------------

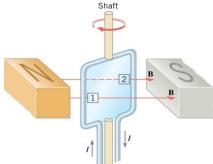
Name: __

Force on a Current-Carrying Wire in B-field

- Direction Follows ______
 - $F = ILB \sin \theta$

A 2 m wire is in a 2×10^{-6} T magnetic field pointing into the page. It carries 2 A of current flowing up. What is the force on the wire?

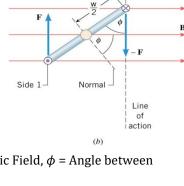
Magnetohydrodynamic Propulsion


- Way to _____ boats with ____ moving parts
- _____ enters tube under ship
- In the tube are electrodes that run _____ through the water
- Also in the tube is a strong ______ field created by _____
- The interaction with the electric _____ and ____ push the ____ out the back of the tube which pushes boat forward
- $F = ILB \sin \theta$

Torque on a Current Loop in B-field

What happens when you put a loop of wire in a magnetic field?

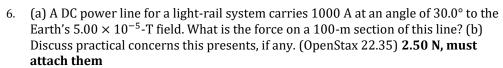
- Side 1 is forced _____ and side 2 is forced _____ (RHR)
- This produces a _______
- The loop turns until its normal is
 _____ with the B-field
- Torque on Loop of Wire
 - $\circ \quad \tau = NIAB \sin \phi$

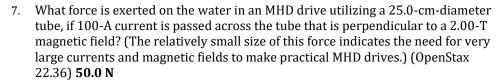


- Where N = Number of loops, I = Current, A = Area of loop, B = Magnetic Field, ϕ = Angle between normal and B-field
- NIA = Magnetic ______
 - Magnetic ______ ↑, torque ↑

A simple electric motor needs to supply a maximum torque of 10 Nm. It uses 0.1 A of current. The magnetic field in the motor is 0.02 T. If the coil is a circle with radius of 2 cm, how many turns should be in the coil?

Electric Motor


- Many loops of ______-carrying wire placed between two ______ (B-field)
- The loops are attached to _____
- The _____ turns the ____ until the normal is _____ to B-field
- At that point the half-rings _____ connect to electric _____
- _____ makes the loop turn more
- The half-rings _____ with the current to _____ the process



Side 2

Practice Work

- 1. Why would a magnetohydrodynamic drive work better in ocean water than in fresh water? Also, why would superconducting magnets be desirable?
- 2. Which is more likely to interfere with compass readings, AC current in your refrigerator or DC current when you start your car? Explain.
- 3. What is the direction of the magnetic force on the current in each of the six cases in Figure 1? (OpenStax 22.31) **left, into, up, no, right, down**
- 4. What is the direction of a current that experiences the magnetic force shown in each of the three cases in Figure 2, assuming the current runs perpendicular to *B*? (OpenStax 22.32) **left, out, up**
- 5. (a) What is the force per meter on a lightning bolt at the equator that carries 20,000 A perpendicular to the Earth's 3.00×10^{-5} -T field? (b) What is the direction of the force if the current is straight up and the Earth's field direction is due north, parallel to the ground? (OpenStax 22.34) **0.600 N/m, West**

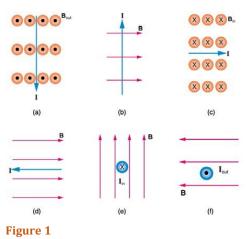


Figure 2

- 8. A wire carrying a 30.0-A current passes between the poles of a strong magnet that is perpendicular to its field and experiences a 2.16-N force on the 4.00 cm of wire in the field. What is the average field strength? (OpenStax 22.37) **1.80 T**
- 9. (a) What is the maximum torque on a 150-turn square loop of wire 18.0 cm on a side that carries a 50.0-A current in a 1.60-T field? (b) What is the torque when ϕ is 10.9°? (OpenStax 22.42) **389 Nm, 73.5 Nm**
- 10. Find the current through a loop needed to create a maximum torque of 9.00 N⋅m. The loop has 50 square turns that are 15.0 cm on a side and is in a uniform 0.800-T magnetic field. (OpenStax 22.43) **10.0** A
- 11. Calculate the magnetic field strength needed on a 200-turn square loop 20.0 cm on a side to create a maximum torque of 300 N·m if the loop is carrying 25.0 A. (OpenStax 22.44) **1.50 T**
- 12. A proton has a magnetic field due to its spin on its axis. The field is similar to that created by a circular current loop 0.650×10^{-15} m in radius with a current of 1.05×10^4 A (no kidding). Find the maximum torque on a proton in a 2.50-T field. (This is a significant torque on a small particle.) (OpenStax 22.47) **3.48** × **10**⁻²⁶ Nm